Hypoxia-Regulated Expression of Attenuated Diphtheria Toxin A Fused with Hypoxia-Inducible Factor-1A Oxygen-Dependent Degradation Domain Preferentially Induces Apoptosis of Hypoxic Cells in Solid Tumor

نویسندگان

  • Nobuko Koshikawa
  • Keizo Takenaga
چکیده

Tumor cells in hypoxic areas of solid tumors are resistant to conventional chemotherapy and radiotherapy and thus are obstacles of cancer therapy. We report here the feasibility of applying hypoxia-regulated expression of diphtheria toxin A (DT-A) for killing hypoxic tumor cells. The expression vector was constructed to express DT-A fused with hypoxia-inducible factor-1A (HIF-1A) oxygen-dependent degradation (ODD) domain under the control of vascular endothelial growth factor gene promoter and contain erythropoietin mRNAbinding protein (ERBP)–binding sequence downstream of the DT-A/ODD sequence. In vitro ubiquitination assay showed that DT-A/ODD, but not DT-A, was ubiquitinated as efficient as HIF-1A under normoxic conditions in a von Hippel-Lindau– and oxygen-dependent manner. DT-A/ODD exhibited a comparable translation inhibitory activity to DT-A. ERBP-binding sequence was effective in stabilizing mRNA under hypoxic conditions in various cell types. Transfection of the vector expressing DT-A/ODD into high-metastatic Lewis lung carcinoma (3LL) A11 cells resulted in induction of apoptosis independently of hypoxia, probably due to its extreme toxicity. However, transfection of the vector expressing attenuated DT-A/ODD or DT-A/ODD resulted in a hypoxiadependent induction of apoptosis. Liposomal gene transfer of the vector encoding DT-A/ODD induced apoptosis in hypoxic, but not in normoxic, areas of solid tumors established by A11 variant cells with higher resistance to hypoxia-induced apoptosis and inhibited the growth of hypoxic tumors established by 3LL-P29 cells. These results suggest that hypoxia-regulated expression of attenuated DT-A/ODD fusion protein is potentially of use for killing hypoxic tumor cells with minimizing the damage to normoxic normal tissues. (Cancer Res 2005; 65(24): 11622-30)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blockade of Hypoxia: The Impact on Tumor Growth in an Experimental Tumor Model

Background: Tumor microenvironment is an active factor participating in immunoregulation, thereby preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia as a major characteristic of solid tumors causes the expression of Hypoxia-Inducible Factor-1α (HIF-1α). This is a transcription factor that mediates hypoxic responses of tumor cells and involves in the express...

متن کامل

Selective enhancement of hypoxic cell killing by tempol-regulated suicide gene expression

The presence of hypoxic regions within solid tumors is caused by an imbalance between cell proliferation and angiogenesis. Such regions may facilitate the onset of recurrence after radiation therapy and chemotherapy, as hypoxic cells show resistance to these treatments. We found that tempol, a nitroxide, strongly induces the accumulation of hypoxia-inducible factor (HIF)-1α, particularly under ...

متن کامل

Enhance Osteolytic Bone Metastases of Breast Cancer Hypoxia and Hypoxia-Inducible Factor-1 Expression

Hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. The transcription factor hypoxia-inducible factor-1 (HIF-1) is a major regulator of adaptation to hypoxia and is implicated in the malignant progression of cancers. Here, we studied whether hypoxia and HIF-1 expression contribute to the development of bone metastases using a well-characterized animal m...

متن کامل

Antitumor effect of TAT-oxygen-dependent degradation-caspase-3 fusion protein specifically stabilized and activated in hypoxic tumor cells.

Human solid tumors contain hypoxic regions that have considerably lower oxygen tension than normal tissues. These impart resistance to radiotherapy and anticancer chemotherapy, as well as predisposing to increased tumor metastases. To develop a potentially therapeutic protein drug highly specific for solid tumors, we constructed fusion proteins selectively stabilized in hypoxic tumor cells. A m...

متن کامل

Radiolabeled Probes Targeting Hypoxia-Inducible Factor-1-Active Tumor Microenvironments

Because tumor cells grow rapidly and randomly, hypoxic regions arise from the lack of oxygen supply in solid tumors. Hypoxic regions in tumors are known to be resistant to chemotherapy and radiotherapy. Hypoxia-inducible factor-1 (HIF-1) expressed in hypoxic regions regulates the expression of genes related to tumor growth, angiogenesis, metastasis, and therapy resistance. Thus, imaging of HIF-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005